A comparative analysis of methods for mapping groundwater pollution hazard: application to the Gallocanta Hydrogeologic Unit (Spain)

Main Article Content

José María Orellana Macías
María Jesús Perles Roselló

Abstract

Anthropogenic activities are the main sources of groundwater pollution. In order to prevent groundwater degradation and to apply suitable mitigation measures, hazard maps are a useful instrument for decision makers. The ultimate goal of the research is to analyse the effectiveness of several groundwater hazard indexes at the Gallocanta Lagoon Basin. To do so, the Hazard Index, the Danger of Contamination Index and the Pollutant Origin and its Surcharge Hydraulically method were applied and compare, and the potentialities and weaknesses of the resulting maps have been analysed. Accurate hazard maps were obtained and, based on their methodological approach, significant differences were found in relation to the rating process, the inventory of the sources, and the treatment of quantity and likelihood. In the light of the results, the indexes tended to undervalue the hazard level of agricultural activities, which were the main sources of pollution of the study area. Therefore, due to the characteristic land uses of the study area, typical of the Mediterranean context, some proposals to improve the indexes have been suggested.



Downloads

Download data is not yet available.

Article Details

How to Cite
Orellana Macías, J. M., & Perles Roselló, M. J. (2020). A comparative analysis of methods for mapping groundwater pollution hazard: application to the Gallocanta Hydrogeologic Unit (Spain). Boletín De La Asociación Española De Geografía, (85). https://doi.org/10.21138/bage.2885

References

Andreo, B., Goldscheider, N., Vadillo, I., Vías, J. M., Neukum, C., Brechenmacher, J., & Sinreich, M. (2004). Sierra de Líbar, Southern Spain. In F. Zwahlen (Ed.), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers (COST action 620) (pp. 183–200). Brussels: European Commission, Directorate-General XII Science, Research and Development.

Boulabeiz, M., Klebingat, S., & Agaguenia, S. (2019). A GIS-Based GOD Model and Hazard Index Analysis: The Quaternary Coastal Collo Aquifer (NE-Algeria). Groundwater, 57(1), 166–176. https://doi.org/10.1111/gwat.12824

Burri, N. M., Weatherl, R., Moeck, C., & Schirmer, M. (2019). A review of threats to groundwater quality in the anthropocene. Science of the Total Environment, 684, 136–154. https://doi.org/10.1016/j.scitotenv.2019.05.236

Busico, G., Cuoco, E., Sirna, M., Mastrocicco, M., & Tedesco, D. (2017). Aquifer vulnerability and potential risk assessment: application to an intensely cultivated and densely populated area in Southern Italy. Arabian Journal of Geosciences, 10(10), 1–25. https://doi.org/10.1007/s12517f017-2996-y

Cichocki, G., Zojer, H., & Zojer, H. (2004). Comparative application of the new Austrian Approach (VURAAS) and the PI method of intrinsic vulnerability mapping, and hazard mapping. In F. Zwahlen (Ed.), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers (COST action 620) (pp. 230–240). Brussels: European Commission, Directorate-General XII Science, Research and Development.

Civita, M. & De Maio, M. (1997) Assessing groundwater contamination risk using ARC/INFO via GRID function. In Proceedings of ESRI Conference 1997. San Diego, July 8–11.

Confederación Hidrográfica del Ebro (2003). Establecimiento de las normas de explotación de la unidad hidrogeológica "Gallocanta" y delimitación de los perímetros de protección de la laguna de Gallocanta (Unpublished report).

Confederación Hidrográfica del Ebro (2016). Informe sobre la determinación de las aguas afectadas o en riesgo de contaminación por nitratos de origen agrario en la demarcación del Ebro. Periodo (2012–2015). Retrieved from: http://www.chebro.es/contenido.visualizar.do?idContenido=19441&idMenu=3811

Confederación Hidrográfica del Ebro (2019). SITEbro. In Confederación Hidrográfica del Ebro. Retrieved from http://iber.chebro.es/geoportal/

Conrad, J., Hughes, S., & Weaver, J. (2004). Map production. In A. Zaporozec (Ed.), Groundwater contamination inventory. A methodological guide with a model legend for groundwater contamination inventory and risk maps (pp. 75–98). Paris: UNESCO.

Cosgrove, W. J., & Rijsberman, F. R. (2000). World Water Vision: Making Water Everybody’s Business. London: Earthscan Publications Ldt.

Daly, D., Hötzl, H., & De Ketelaere, D. (2004). Risk Assessment. In F. Zwahlen (Ed.), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers (COST action 620) (pp. 106–121). Brussels: European Commission, Directorate-General XII Science, Research and Development.

De Ketelaere, D., Hötzl, H., Neukum, C., Civita, M., & Sappa, G. (2004). Hazard Analysis and Mapping. In F. Zwahlen (Ed.), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers (COST action 620) (Vol. 1, pp. 86–105). Brussels: European Commission, Directorate-General XII Science, Research and Development.

Dimitriou, E., Karaouzas, I., Sarantakos, K., Zacharias, I., Bogdanos, K., & Diapoulis, A. (2008). Groundwater risk assessment at a heavily industrialised catchment and the associated impacts on a peri-urban wetland. Journal of Environmental Management, 88(3), 526–538. https://doi.org/10.1016/j.jenvman.2007.03.019

Ducci, D. (1999). GIS Techniques for Mapping Groundwater Contamination Risk. Natural Hazards, 20, 279–294. https://doi.org/10.1023/A

EASAC. (2010). Groundwater in the Southern Member States of the European Union. Halle: European Academies Science Advisoty Council.

Entezari, M., Yamani, M., & Jafari Aghdam, M. (2016). Evaluation of intrinsic vulnerability, hazard and risk mapping for karst aquifers, Khorein aquifer, Kermanshah province: a case study. Environmental Earth Sciences, 75(5), 1–10. https://doi.org/10.1007/s12665-016-5258-5

ESRI (2011). ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute, Redlands, California.

European Commission. (2018). Report on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2012–2015. Retrieved from https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A52018DC0257

European Economic Community (EEC). Council Directive 91/271/EEC (1991a). Brussels, European Economic Community. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31991L0271

European Economic Community (EEC). Council Directive 91/676/EEC (1991b). Brussels, European Economic Community. Retrieved from https://eur-lex.europa.eu/legal-content/es/ALL/?uri=CELEX%3A31991L0676

European Economic Community (EEC). Council Directive 2000/60/EC (2000). Brussels, European Economic Community. Retrieved from https://eur-lex.europa.eu/eli/dir/2000/60/oj

European Union (EU). Council Directive 2006/118/EC, 19 Official Journal of the European Union (2006). Retrieved from http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0118

Foster, S., & Hirata, R. (1988) Groundwater pollution risk assessment. A methodology using available data. Lima: Pan-American Center for Sanitary Engineering and Environmental Sciences (CEPIS).

Foster, S., & Candela, L. (2007). Diffuse Groundwater Quality Impacts from Agricultural Land-use: Management and Policy Implications of Scientific Realities. In P. Quevauviller (Ed.), Groundwater Science and Policy. An international overview (pp. 454–470). London: Royal Society of Chemistry. https://doi.org/10.1039/9781847558039-00454

Foster, S., Hirata, R., Gomes, D., D’Elia, M., & Paris, M. (2002). Groundwater Quality Protection (Groundwater Management Advisory Team, Ed.). Washington D.C.: The World Bank.

Foster, S. S. D., & Chilton, P. J. (2003). Groundwater: The processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1440), 1957–1972. https://doi.org/10.1098/rstb.2003.1380

Gallagher, F. J., Pechmann, I., Bogden, J. D., Grabosky, J., & Weis, P. (2008). Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environmental Pollution, 153(2), 351–361. https://doi.org/10.1016/j.envpol.2007.08.011

Gleeson, T., Wada, Y., Bierkens, M. F. P., & Van Beek, L. P. H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197–200. https://doi.org/10.1038/nature11295

Goverment of Aragón (1997). DECRETO 77/1997, de 27 de mayo, del Gobierno de Aragón, por el que se aprueba el Código de Buenas Prácticas Agrarias de la Comunidad Autónoma de Aragón y se designan determinadas áreas Zonas Vulnerables a la contaminación de las aguas por los nitratos procedentes de fuentes agrarias. Retrieved from http://www.boa.aragon.es/cgi-bin/EBOA/BRSCGI?CMD=VEROBJ&MLKOB=437091763531

Goldscheider, N., Brechenmacher, J., Hötzl, H., & Neukum, C. (2004). Comparative application of the German GLA method, the Swiss EPIK method and the PI method of intrinsic vulnerability mapping, and hazard mapping. In F. Zwahlen (Ed.), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers (COST action 620) (pp. 200–217). Brussels: European Commission, Directorate-General XII Science, Research and Development.

Gracia, F.J., Gutiérrez, F., & Gutiérrez, M. (1999). Evolución Geomorfológica del Polje de Gallocanta (Cordillera Ibérica). Revista de la Sociedad Geológica de España, 12(3–4), 351–368.

Hamamin, D. F., Qadir, R. A., Ali, S. S., & Bosch, A. P. (2018). Hazard and risk intensity maps for water-bearing units: a case study. International Journal of Environmental Science and Technology, 15(1), 173–184. https://doi.org/10.1007/s13762-017-1376-1

International Panel on Climate Change (IPCC) (2018). Special Report. Global warming of 1.5 ºC. Retrieved from https://www.ipcc.ch/sr15/

Jiménez-Madrid, A., Martínez-Navarrete, C., & Carrasco-Cantos, F. (2010). Groundwater risk intensity assessment. Application to carbonate aquifers of the western mediterranean (Southern Spain). Geodinamica Acta, 23(1–3), 101–111. https://doi.org/10.3166/ga.23.101-111

Johansson, P., & Hirata, R. (2004). Rating of groundwater contamination sources. In A. Zaporozec (Ed.), Groundwater contamination inventory. A methodological guide with a model legend for groundwater contamination inventory and risk maps (pp. 63–74). Paris: UNESCO.

Kuisi, M. Al, Mashal, K., Al-Qinna, M., Hamad, A. A., & Margana, A. (2014). Groundwater Vulnerability and Hazard Mapping in an Arid Region: Case Study, Amman-Zarqa Basin (AZB)-Jordan. Journal of Water Resource and Protection, 6(04), 297–318. https://doi.org/10.4236/jwarp.2014.64033

Llamas, R., & Custodio, E. (2002). Intensive use of groundwater. Challeges and opportunities. (R. Llamas & E. Custodio, Eds.). Lisse: A.A. Balkema.

Mádl-Szőnyi, J., Katalin, N., Mező, G., Havas-Szilágyi, Mindszenty, A., & Halupka, G. (2004). Intrinsic vulnerability mapping using the “preliminary European Approach”, and hazard mapping. In F. Zwahlen (Ed.), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers (COST action 620) (pp. 274–286). Brussels: European Commission, Directorate-General XII Science, Research and Development.

Mazurek, J. (1979). Summary of the Modified LeGrand Method. Norman: National Center for Groundwater Research.

Mimi, Z. A., & Assi, A. (2009). Intrinsic vulnerability, hazard and risk mapping for karst aquifers: A case study. Journal of Hydrology, 364(3–4), 298–310. https://doi.org/10.1016/j.jhydrol.2008.11.008

Moreno, J. M., Aguiló, E., Alonso, S., Álvarez-Cobelas, M., Anadón, R., Ballester, F., & Zazo, C. (2005). Evaluacion Preliminar de los impactos en España por efecto del Cambio Climático. (J. M. Moreno, Ed.). Madrid: Ministerio de Medio Ambiente.

Pérez, A., Luzón, A., Roc, A. C., Soria, A. R., Mayayo, M. J., & Sánchez, J. A. (2002). Sedimentary gacies distribution and genesis of a recent carbonate-rich saline lake: Gallocanta Lake, Iberian Chain, NE Spain. Sedimentary Geology, 148, 185–202. https://doi.org/10.1016/S0037-0738(01)00217-2

Pal, P. (2017). Industrial Water Treatmen Process Technology. (K. McCombs, Ed.), Industrial Water Treatment Process Technology. Joe Hayton. https://doi.org/10.1016/b978-0-12-810391-3.00001-1

Pueyo Campos, A., Zúñiga Antón, M., Sebastián López, M., & Sáez Romera, C. (2006). Posibilidades de análisis y representación espacio-temporal de la información demográfica municipal española en el periodo 1970–2005. In M. T. Camacho Olmedo, J. A. Cañete Pérez, & J. J. Lara Valle (Eds.), El acceso a la información espacial y las nuevas tecnologías geográficas (pp. 409–425). Granada: Universidad de Granada.

Santucci, L., Carol, E., & Tanjal, C. (2018). Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina). Chemosphere, 206, 727–735. https://doi.org/10.1016/j.chemosphere.2018.05.084

Shrestha, S., Semkuyu, D. J., & Pandey, V. P. (2016). Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Science of the Total Environment, 556, 23–35. https://doi.org/10.1016/j.scitotenv.2016.03.021

Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., & Grizzetti, B. (2011). The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. New York: Cambridge University Press.

UNESCO (2015). The United Nations world water development report 2015: water for a sustainable world. UNESCO Publishing, Paris. Paris.

USEPA (1978). Surface Impoundments and their effects on ground-water quality in the United States. A preliminary survey.

Vargas Amelin, E. (2018). KINDRA’s final conference. Brussels. Retrieved from: https://kindraproject.eu/final-conference/

Vías, J. M. (2005). Desarrollo metodológico para la estimación y cartografía del riesgo de contaminación de las aguas subterráneas mediante SIG. Aplicación en acuíferos del sur de España. Universidad de Málaga.

Wick, K., Heumesser, C., & Schmid, E. (2012). Groundwater nitrate contamination: Factors and indicators. Journal of Environmental Management, 111, 178–186. https://doi.org/10.1016/j.jenvman.2012.06.030

Worrall, F., Spencer, E., & Burt, T. P. (2009). The effectiveness of nitrate vulnerable zones for limiting surface water nitrate concentrations. Journal of Hydrology, 370(1–4), 21–28. https://doi.org/10.1016/j.jhydrol.2009.02.036

Zhang, H., Yang, R., Wang, Y., & Ye, R. (2019). The evaluation and prediction of agriculture-related nitrate contamination in groundwater in Chengdu Plain, southwestern China. Hydrogeology Journal, 27(2), 785–799. https://doi.org/10.1007/s10040-018-1886-z

Zwahlen, F., Goldscheider, N., & Neale, S. (2004). Introduction. In F. Zwahlen (Ed.), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers (pp. 1–4).